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Abstract—The purpose of this paper is to attempt to 

predict the generalization of a neural network toward 

unseen information. To do this we generated models that 

were valid for the cifar10 dataset and tried to predict the 

test error of the model using the model architecture, 

optimizer, initial and end weights, and training error. 

With the models we generated we represented them as 

feature vectors with one-hot and hyperparameter 

information. The feature vectors were then used in an 

ensemble neural network of 4 LSTM’s each processing a 

piece of the collected information.  
 

I. INTRODUCTION 
    The current process of building and using neural networks 

is to have a dataset split into train and test sets. The neural 

network is then trained with the training set and evaluated 

with the test set. The model is deemed good if it has a good 

generalization to unseen data; meaning that the difference 

between the training error and the testing error is low. If we 

are able to predict how a model will generalize towards 

unseen data, then we will be able to effectively remove testing 

and model evaluation from the machine learning process. This 

will help speed up the development process for machine 

learning projects. The purpose of this research was to attempt 

to predict the test error, and in turn the generalization error, of 

a neural network given it’s network architecture, optimizer, 

beginning and ending weights, and training error. To do this 

we will be looking at models trained on the cifar10 dataset. 
 

II. METHODS 
A. Generating Random Models 

In order to predict the generalization of a neural 

network, we first needed to get a dataset of neural networks 

that were trained on cifar10 data. In order to get models that 

cover a large range of architecture and optimization pairings 

we decided to randomly generate these models. To do this we 

randomly sampled models uniformly across our sample space 

of layer types, optimizers, and activations. The number of 

model components was decided by a randomly chosen number 

from 3 to 10. The smallest model we could generate would 

have 3 layers and the largest would have 10 layers. Our layer 

types consisted of convolution, fully connected, max pooling, 

batch normalization, and dropout layers. Our  optimizer types 

consisted of stochastic gradient descent, Adam, Adadelta, and 

Adagrad. We used relu, selu, and leaky relu for our activation 

types.  
We decided not to make our loss function random 

and to just use cross entropy loss because it works best for 

classification data. We also chose activations for only the 

layer types that worked with activations, like the convolution 

layers and fully connected layers. These constraints were put 

in place in an attempt to reduce the number of errors produced 

by the models.  
Once we had the layer types, we used the 

nn.Sequential function in the PyTorch deep learning 

framework to put the model together. Then we tested the 

model on the cifar10 dataset. If we could run the model on the 

cifar10 dataset with 0 training error, then the model was saved 

to be used in our model dataset. We did this until we had 

about 1000 data points in our dataset.  
 
B. Processing Dataset  

To predict test error, we made an RNN or more 

specifically 4 connected LSTM’s; each to process a piece of 

the information we collected (model architecture, optimizer, 

initial and end weight, and train error). We decided to 

calculate some basic statistics like the sum, maximum, 

minimum, mean, and standard deviation on the initial and 

ending weights to get a smaller, but representative input for 

our weight LSTM. When we saved the model architectures 

and optimizers, we saved them as strings because it was 

easiest to do. However in order to get the model architecture 

in a format that would make sense to the RNN we decided to 

represent this information using one-hot vectors. This allowed 

us to have a 1 if a specific layer type was used in a layer and a 

0 if a layer type was not used. We also did this for the 

optimization information. We did not do this for the weights 

and train error since they were already numbers.  
    The hyperparameters of a neural network often do a lot to 

help the performance of the network. Because of this, we 

decided to include the hyperparameters in each layer and 

optimizer along with its one-hot vector to make a sort of 

feature vector that completely represented the architecture and 

optimizer of the model. Since we saved the architecture and 

optimizer as strings it was easiest to just go through the string 
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looking for the hyperparameter keywords in order to extract 

each value. 
 
C. RNN Structure and Methods 

The structure of the RNN consisted of and ensemble 

of four LSTM’s that were connected together by the hidden 

state output each model produced. We used LSTMs instead of 

the basic RNN so our model could better remember the 

information it had seen earlier. Initial hidden state was a tensor 

of randomly generated numbers from 0 to 1 and was used as 

an input to the architecture LSTM since no LSTM came 

before it. The hidden state produced by the architecture LSTM 

was then used as an input to the optimizer LSTM along with 

the optimizer information and the same was done with the 

remaining LSTM’s. The output of the final LSTM was then 

put through a fully connected layer and we put output through 

a sigmoid function in order to scale it to a number between 0 

and 1 like the test error we were comparing it with. We trained 

the model for 600 epochs and evaluated its predictions using 

the epsilon losses between the predicted output and the actual 

test error. 

 

III Results 
Model generation code produced models that 

performed in a way that was very similar to the figure on the 

left. The benchmarked model we tried had a performance like 

the figure on the right. The train error is the blue plot and the 

test error is the red plot. 

 

 
In all the models we made through random generation, we got 

train and test errors that were over .90 or 90\% as shown in the 

following histograms. 

 
An interesting thing that we found, however, is that the 

generalization errors from our randomly generated models 

were very low.

 
 

IV Discussion 
From our work we saw that it was easy to produce models 

with high train and test errors, but low generalization error. 

Since we are trying to predict the generalization error, we 

generate many models like these and train our meta learner on 

them. Then we can see if it learns to predict generalization by 

evaluating it with models that have zero train error. This way 

we can tell what models would have good test performance. 

When we looked at the models, we also saw that because the 

models were randomly generated, they were very strange. We 

were getting models with dropout layers as the final layer a 

learning rates that were either too low or too high. This results 

in weird graphs like the one shown below. 

 



 
 

V Further Work 
Based on what we have accomplished so far, some 

further work that could be done is to extend the sample space 

from which we were generating random models. This could be 

done by adding more layer blocks, activations, and optimizers. 

We could also enhance our current random model generator to 

always generate valid model with zero training error. Another 

way we could extend this work is to generate variation of the 

benchmarked models that had a good performance on the 

cifar10 dataset to produce more models. 

 

VI Conclusion 
We were able to make the random model generator, 

but we were not able to get it to produce models that had zero 

train error. Due to the time it took to build the model generator 

and the time it is taking to generate a big enough dataset of 

models to train with, we have not yet been able to train our 

meta learner to predict generalization. 
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